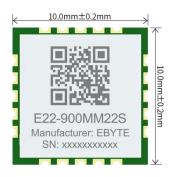


E22-900MM22S Product specifications

SX1262 868/915MHz ultra small size Lora SMD module

Catalog

Chapter	1 Overview	2
	Introduce	
1.2	Features	2
1.3	Application Scenarios	2
Chapter	2 Specifications	3
2.1	Limit parameters	3
2.2	Working parameters	3
Chapter	3 machine dimensions and pin definition	∠
Chapter	4 Basic operations	5
4.1	Hardware design	5
4.2	Software programming	6
Chapter	5 basic application	6
5. 1	Basic circuit	6
Chapter	6 FAQ	7
6.1	Transmission distance is not ideal.	7
6.2M	Modules are easily damaged	7
6.3	Bit error rate is too high	7
${\tt Chapter}$	7 Welding operation guidance	8
7. 1	Reflow soldering temperature	8
7.2	Diagram of reflow welding	Ç
${\tt Chapter}$	8 Related models	S
Chapter	9 Antenna Guide	10
9.1	Antenna recommendation	10
Revise h	listory	10
About us		11



Chapter 1 Overview

1.1 Introduce

E22-900MM22S is based on the new generation of LoRaTM radio frequency chip SX1262 produced by Semtech in the United States as the core of the independent research and development of ultra-small volume, and is suitable for 868MHz, 915MHz chip LoRaTM wireless module.

Since the original imported SX1262 is used as the module core, compared with the last generation LoRaTM transceiver, the anti-interference performance and communication distance are further improved. Because it uses the new LoRaTM modulation technology, the anti-interference performance and communication distance are far beyond the current FSK, GFSK modulation products. This module is mainly aimed

at smart home, wireless meter reading, scientific research and medical, and medium and long range wireless communication equipment. Because the RF performance and component selection are in accordance with industrial standards, the product can cover the ultra-wide frequency range of 850~930MHz and downward compatible with SX1278 and SX1276. Use industrial grade high precision 32MHz crystal oscillator.

Since the module is a pure RF transceiver module, MCU driver or special SPI debugging tool should be used.

1.2 Features

- The measured communication distance can reach 7km.
- Maximum transmit power 160mW, multi-stage tunable software;
- supports global license-free ISM 868/915MHz band;
- LoRaTM supports data transfer rates ranging from 0.018 to 62.5kbps.
- FSK mode supports up to 300kpbs data transfer rate.
- Backwards compatible with SX1278/SX1276 series RF transceivers;
- The FIFO has a large capacity and supports 256Byte data caching.
- A new SF5 spreading factor that supports dense networks.
- supports 1.8V to 3.7V power supply, and any power supply greater than 3.3V ensures the best performance.
- Industrial-grade standard design, supporting long-term use at -40 ~ 85° C;
- IPEX interface, stamp hole optional, easy to user secondary development, easy to integrate.

1.3 Application Scenarios

- Home security alarm and remote keyless entry;
- Smart home and industrial sensors, etc.
- wireless alarm security system;
- Building automation solutions;
- Wireless industrial-grade remote control;

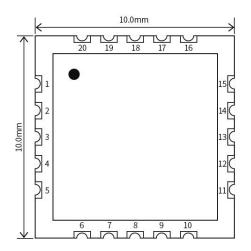
- Advanced Meter Reading Architecture (AMI);
- Applications in the automotive industry.

Chapter 2 Specifications

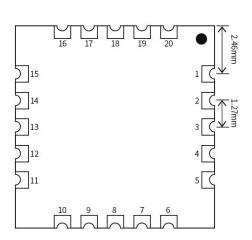
2.1 Limit parameters

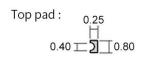
	Perfo	rmance	N-+	
mainly parameters	Min	Max	Notes	
Power Supply Voltage (V)	0	3.7	Permanently burn module over 3.7V	
Blocking power (dBm)	_	10	At close range, the burn probability is low	
Operating temperature (°C)	-40 85			
Product net weight	0.5g±	0.02g	Product net weight	

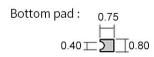
2.2 Working parameters


		Performance			
ma	inly parameters	Min	Typical values	Max	Notes
Power	Supply Voltage (V)	1.8	3.3	3. 7	≥3.3V Can ensure the output power
commun	nication level (V)		3.3		Using 5V TTL may burn out
Workin	g temperature (°C)	-40	_	85	Industrial grade design
Working	frequency band (MHz)	850	868/915	930	Support ISM Frequency
Power	Emission current (mA)		100		instantaneous power consumption
	Receives the current((mA)		10		
consumption	Sleep current (nA)		180		software shut off
Maximum t	ransmitted power (dBm)	21. 4	21.5	22. 3	
Sensitivity of reception (dBm)		-144	-146	-147	air rate is 0.3kbps
	in note (hng)	0.6k	_	300k	User programming control
a	ir rate (bps)	0.018k		62. 5k	User programming control

mainly parameters	Description	Notes		
Distance	6000m	Clear and open environment, antenna gain 5dBi, antenna		
Distance	OOOOIII	height 2.5m, air speed 0.3kbps.		
FIFO	256Byte	Maximum sending length		
Crystal frequency 32MHz		Passive crystal oscillator		




Modulation method	LoRa(recommend)	
Encapsulation way SMD		
Interface	1.27mm	Stamp hole
Communication interface	SPI	0-10Mbps
Modulation method	10* 10*2.5 mm	
Antenna interface	Stamp hole/IPEX	The equivalent impedance is about 50 ohms


Chapter 3 machine dimensions and pin definition

Unit:mm pad quantity:20 Tolerance value: $X.X\pm0.2$ mm $X.XX\pm0.05$ mm

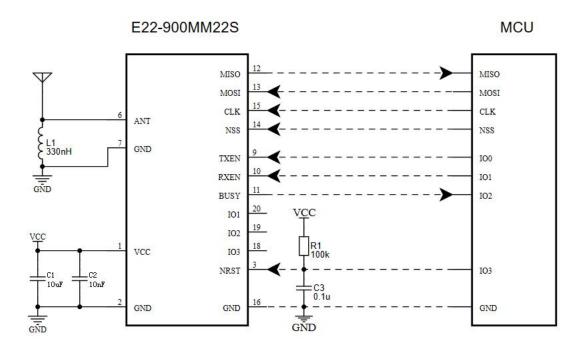
Pin number	Pin name	Pin direction	Pin purposes		
1	WOO		Power supply, range 1.8V~3.7V (external ceramic filter capacitor		
1	VCC		is recommended)		
2	GND		Ground wire, connected to the power reference ground		
3	NRST	input	Chip reset triggers input pin, active low level		
4	NC				
5	NC				
6	ANT		Radio frequency interface, stamp hole		
7	GND		Ground wire, connected to the power reference ground		
8	NC				
0	TVDN		Rf switch transmitting control pin, connected to external		
9	TXEN	input	microcontroller IO or DIO2, high level effective		
10	RXEN	DVPN	DVEN		Rf switch receiving control pin, connected to external
10		RXEN input	microcontroller IO, high level effective		
11	BUSY	output	Used for status indication		

12	MISO	output	SPI data output pin
13	MOSI	input	SPI data input pin
14	14 NSS input		The module chip selection pin is used to start an SPI
11	Noo	Input	communication
15	SCK	input	SPI clock input pin
16	GND		Ground wire, connected to the power reference ground
17	NC		
18	DI03	Input/output	Configurable universal I/O port
19	DI02	Input/output	Configurable universal I/O port
20	DIO1	Input/output	Configurable universal I/O port

Chapter 4 Basic operations

4.1 Hardware design

- It is recommended to use DC regulated power supply to power the module, the ripple coefficient of the power supply is as small as possible, and the module must be reliably grounded.
- Pay attention to the correct connection of the positive and negative terminals of the power supply, such as reverse connection may cause permanent damage to the module;
- Check the power supply, making sure it's between recommended supply voltages, as exceeding the maximum value can permanently damage the module.
- Check the stability of the power supply, the voltage cannot fluctuate dramatically and frequently;
- When designing a power supply circuit for a module, it is often recommended to retain more than 30% margin, which is conducive to long-term and stable work of the whole machine.
- The module should be kept away from parts with high electromagnetic interference, such as power supplies, transformers, and high-frequency cables.
- High-frequency digital cable routing, high-frequency analog cable routing, and power cable routing must avoid under the module. If necessary, pass under the module, assuming that the module is welded at the Top Layer, copper is laid on the Top Layer of the contact part of the module (all copper is laid and well grounded), and it must be near the digital part of the module and wired at the Bottom Layer.
- Assuming the module is welded or placed at the Top Layer, arbitrarily wiring at the Bottom Layer or other layers is also wrong, affecting the module's stray and receiving sensitivity to varying degrees.
- Assuming that there are large electromagnetic interference devices around the module will greatly affect the performance of the module, and according to the strength of the interference suggest to stay away from the module, if the circumstances allow for appropriate isolation and shielding;
- Assuming that there are wires around the module with large electromagnetic interference (high-frequency digital, high-frequency analog, power cable) will also greatly affect the performance of the module, it is recommended to stay away from the module according to the strength of the interference, and do appropriate isolation and shielding if circumstances permit.
- Communication lines using 5V level must be connected in series with 1k-5.1k resistors (not recommended, there is still a risk of damage);
- Try to stay away from TTL protocols at the 2.4GHz physical layer, such as USB3.0.


- Antenna installation structure has a great impact on module performance, so make sure the antenna is exposed, preferably vertically up. When the module is installed inside the enclosure, the antenna extension cable can be used to extend the antenna outside the enclosure.
- The antenna must not be mounted inside a metal shell, which weakens the transmission range.
- It is recommended to add a 200R protection resistor to the RXD/TXD of the external MCU.

4.2 Software programming

- This module has a built-in SX1268/SX1262, and its driving mode is exactly the same as SX1268/SX1262, users can operate in accordance with the SX1268/SX1262 chip volume.
- DI01, DI02 are generic IO ports that can be configured for many functions. DI02 can be connected with TXEN, not with the IO port of MCU, and used to control the RF switch emission. See SX1262 manual for details. If not used, it can be suspended.
- The module uses a 32 MHz passive crystal oscillator.

Chapter 5 basic application

5.1 Basic circuit

Chapter 6 FAQ

6.1 Transmission distance is not ideal

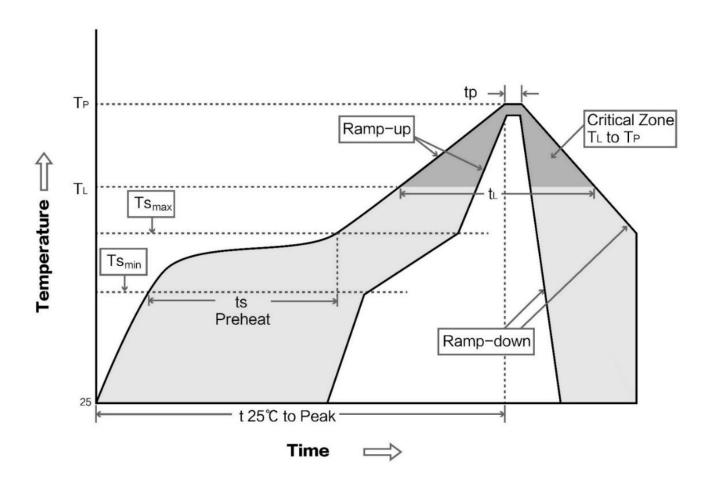
- When there is a straight-line communication obstacle, the communication distance will decay accordingly.
- Temperature, humidity, and co-frequency interference increase the communication packet loss rate.
- The ground absorbs and reflects radio waves, which is poor near the ground.
- Sea water is extremely capable of absorbing radio waves, making seaside tests less effective.
- Antenna near a metal object, or placed in a metal shell, the signal attenuation can be severe;
- The power register is incorrectly set, or the air rate is set too high (the higher the air rate, the closer the distance);
- The low voltage of the power supply is lower than the recommended value at room temperature, and the lower the voltage, the lower the power generation.
- The matching degree between the antenna and the module is poor or the quality of the antenna itself is faulty.

6.2 Modules are easily damaged

- Check the power supply to make sure it's between recommended supply voltages, as exceeding the maximum value can permanently damage the module.
- Check the stability of the power supply, the voltage shouldn't fluctuate wildly or frequently.
- Ensure that high-frequency devices are electrostatic sensitive during installation and use using anti-static operations.
- Ensure that the humidity is not too high during installation and use, as some components are humidity sensitive.
- Do not use the device at too high or too low temperature if there are no special requirements.

6.3 Bit error rate is too high

- Stay away from the interference source, or change the frequency and channel to avoid interference.
- The clock waveform on the SPI is non-standard. Check whether there is interference on the SPI line, and the SPI bus should not be too long.
- A poor power supply can cause garbled , so ensure the reliability of the power supply.
- Poor quality or too long extension wires or feeders will also cause high BER.


Chapter 7 Welding operation guidance

7.1 Reflow soldering temperature

Profile Feature	curve feature	Sn-Pb Assembly	Pb-Free Assembly	
Solder Paste	Solder paste	Sn63/Pb37	Sn96.5/Ag3/Cu0.5	
Droboot Tomporature min (Tomin)	Minimum preheating	100°C	150°C	
Preheat Temperature min (Tsmin)	temperature	100 C	150 C	
Droboot tomporature may (Tomay)	Maximum preheating	150°C	200°C	
Preheat temperature max (Tsmax)	temperature	150 C	200 C	
Preheat Time (Tsmin to Tsmax)(ts)	Warm up time	60-120 sec	60-120 sec	
Average ramp-up rate(Tsmax to Tp)	Average rate of rise	3°C/second max	3°C/second max	
Liquidaya Tamparatura (TL)	Temperature of the	400°C	217°C	
Liquidous Temperature (TL)	liquid phase	183℃	217 C	
Time (tL) Maintained Above (TL)	Time above the liquidus	60-90 sec	30-90 sec	
Peak temperature (Tp)	Peak temperature	220-235°C	230-250°C	
Aveage ramp-down rate (Tp to Tsmax)	Average rate of decline	6°C/second max	6°C/second max	
Time 25°C to modulate removative	Time from 25 ° C to	6 minutes may	9 minutes may	
Time 25°C to peak temperature	peak temperature	6 minutes max	8 minutes max	

7.2 Diagram of reflow welding

Chapter 8 Related models

Model	IC	Frequency	Power dBm	Distance km	Package	Size mm	Antenna	
		Hz					interface	
E22-400T22S	SX1268	430M 470M	99	4	SMD	16*26	Stamp	
<u>EZZ 4001ZZ3</u>	3A1200	430M 410M	22	22 4		10*20	hole/IPEX	
E99 400M20C	CV10C0	499W 470W	0.0	10 015	04.00 5	Stamp		
<u>E22-400M30S</u>	SX1268	433M 470M	30	12	SMD	24*38.5	hole/IPEX	
E99, 000M20C	CV10C0	CV10C0 0C0W	0C0M 01FM	30	10	CMD	0.44.20 =	Stamp
E22-900M30S	SX1262	868M 915M	30	12	SMD	24*38.5	hole/IPEX	
D00 000M00C	CV10C0	20 0000 0150		C =	CMD 14.00	14100	Stamp	
<u>E22-900M22S</u>	SX1262	868M 915M	22	6.5	SMD	14*20	hole/IPEX	
D00 400M000	SX1268 433M 470M	00	СГ	0.5	14.00	Stamp		
E22-400M22S		433M 470M	22	6. 5	SMD	14*20	hole/IPEX	

Chapter 9 Antenna Guide

9.1 Antenna recommendation

Antennas play an important role in the communication process, and often inferior antennas will have a great impact on the communication system. Therefore, our company recommends some antennas as supporting our wireless module with excellent performance and reasonable price.

Model	Туре	Frequency Hz	Interface	Gain dBi	height	Feeder	Features
TX868-XP-100	Suker antenna	868M	SMA-J	3. 5	29cm	100cm	Suction cup antenna, high gain
TX868-JK-20	Rubber antenna	868M	SMA-J	3	200mm	_	Bendable adhesive rod, omnidirectional antenna
TX868-JZ-5	Rubber antenna	868M	SMA-J	2	50mm	-	Ultra short straight, omnidirectional antenna
TX915-XP-100	Suker antenna	915M	SMA-J	3. 5	25cm	100cm	Suction cup antenna, high gain 益
TX915-JK-20	Rubber antenna	915M	SMA-J	3	210mm	_	Bendable adhesive rod, omnidirectional antenna
TX915-JK-11	Rubber antenna	915M	SMA-J	2. 5	110mm	-	Bendable adhesive rod, omnidirectional antenna
TX915-JZ-5	Rubber antenna	915M	SMA-J	2	50mm	-	Ultra short straight, omnidirectional antenna

Revise history

Version	Revise date	Revise notes	maintainer
1.0	2022-10-21	Original version	Yan
1.1	2023-02-07	Bug fixes	Yan
1.2	2023-11-08	Modify the crystal description	Ning
1.3	2023-12-13	Bug fixes	Нао

About us

Hotline: 4000-330-990 Tel: 028- 61543675

Support: support@cdebyte.com
Website: https://www.cdebyte.com

Address: Building B5, No. 199, West District Avenue, High-tech West District, Chengdu City, Sichuan

Province

